If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-8n^2-10n+137=0
a = -8; b = -10; c = +137;
Δ = b2-4ac
Δ = -102-4·(-8)·137
Δ = 4484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4484}=\sqrt{4*1121}=\sqrt{4}*\sqrt{1121}=2\sqrt{1121}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{1121}}{2*-8}=\frac{10-2\sqrt{1121}}{-16} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{1121}}{2*-8}=\frac{10+2\sqrt{1121}}{-16} $
| 85+2x+2x+70=155 | | 7(q+35)= | | 4(4t+2)=2(4t+4) | | x/100=11/12 | | -1-4r=19 | | -5/6-3m=7/6-2m | | X=-5x+5 | | z+(8/5)=(z/5) | | X=-0.9x | | 1-1/3a=5 | | (90)-(4x+1)+(3x)=(x) | | 22=9x+4 | | 5(r+6)= | | 1+x/4-4=3(2-x) | | 15x=-0.05 | | -(3y+1)-(-2y+-6)=2 | | 2v-8=9 | | 3b-6=8 | | 34=40+3x | | -(v+1)=5(v-2)+3(-2v+3) | | (4x+1)+(x)+(3x)=(90) | | 139+3x+(5x-10)+(10x-9)+3x=540 | | z+13.8=-6.9 | | 4r-8=6 | | X+0.2x=38 | | 132=—7d+6 | | 6x+5x+2+6=7x+4+3x | | C/b=10 | | 13y+26=52 | | 5p+15=2p | | x^2-29x+420=0 | | -5(4x-8)+5=-20x+45 |